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Machine learning (ML) methods have found their application in a wide range of particle accelerator
control tasks. Among other possible use cases, like anomaly detection and time series studies, neural
networks (NNs) can also be utilized for automated beam position control (orbit correction). ML
studies on this topic, which were initially based on simulations, were successfully transferred to
real accelerator operation. For this purpose, classical fully-connected multi-layer feed-forward NNs
were trained by supervised learning on measured orbit data to apply local and global beam position
corrections at the 1.5–GeV electron storage ring of the DELTA accelerator facility. The supervised
NN training was carried out with various conjugate gradient backpropagation learning algorithms.
Afterwards, the ML-based orbit correction (OC) performance was compared with a conventional
numerical-based computing method. Here, the ML-based approach showed a competitive orbit
correction quality in fewer number of correction steps which yields in a faster OC convergence.
This paper summarizes the basic ideas, presents the latest results and points out possible future
improvements.

I. INTRODUCTION

Artificial intelligence (AI) is expected to revolutionize
many aspects of society and science through its ability to
optimize processes and decisions using computer-based
algorithms. Machine learning (ML) as a sub-field of AI
is based on computational statistical algorithms that al-
low computers to learn directly from data, without be-
ing explicitly programmed. Thus, for example, machine
learning techniques have the potential to perform essen-
tial tasks of automated controls in particle accelerators.
The potential applications of ML in accelerator controls
are diverse. They range from automated machine tuning,
beam diagnostics, (big) data analysis for fault detection,
prediction and classification up to accelerator modeling
and simulation [1, 2].

Stable electron orbit control is also an important task
especially for modern synchrotron light sources, since un-
corrected beam orbits imply large beam amplitudes and
angles. This could result in vacuum chamber heating,
lower synchrotron radiation beamline illumination, re-
duced injection efficiency as well as decreased dynamic
aperture and hence lower beam lifetime. Therefore, since
2018 [3], ML-based orbit correction (OC) methods have
extensively been studied and applied at DELTA, a 1.5-
GeV electron storage ring operated as a synchrotron light
source and a new facility for ultrashort pulses in the VUV
and THz regime [4–6].

In the past, ML techniques were successfully applied
to real machine operation for each orbit plane inde-
pendently [7]. Now, the method has been extended to
full x,z-coupled machine operation including weighted
beam position monitor (BPM) signals applied to both
orbit planes simultaneously. The residual weighted or-
bit quality has been bench-marked against alternative
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OC approaches like standard singular value decomposi-
tion (SVD) [8–10] and more sophisticated qp-cone-based
approaches [11, 12].

II. SIMULATION RESULTS

Initially, the storage ring was simulated by use of
the Accelerator Toolbox (AT), a MatLab programming
framework for accelerator studies [13–15]. The related
DELTA storage ring lattice model contains all main ac-
celerator components, including the entire setup for the
OC system [16]. It consists of 54 beam position monitors
which determine the beam orbit in both orbit planes si-
multaneously as well as 30 horizontal (horz.) and 26 ver-
tical (vert.) orbit correction magnets (steerer) [8, 10, 17].
Based on the standard storage ring optics, 3000 uniformly
distributed random sets of steerer kicks in the interval of
±0.03 mrad (horz.) and ±0.01 mrad (vert.) were gen-
erated for both planes. See Fig. 1 as an example. This
results in 3000 closed orbit response vectors (data set no.)
each with 108 entries (BPM no.) for the x,z-coupled case
(see Fig. 2). For the simulation studies, the Euclidean
Norm (2-norm) was used as a measure of the unweighted
orbit error χx,z:

χx,z := ‖∆x,z‖2 =

√√√√ K∑
i=1

(∆x,z)2i . (1)

It is defined as the square root of the sum of squared orbit
deviations ∆2

x,z for the total number K of BPMs in each
orbit plane (x, z) with respect to the undisturbed orbit.
The corresponding data can be summarized in histogram
plots, as depicted in Fig. 3.

To simulate hardware read-back errors, artificial noise
was added to the model-based data. The noise level was
uniformly distributed to the ML-input and target values
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FIG. 1. Examples of closed orbit distortions for a x,z-coupled
storage ring caused by 10 data sets of random steerer kicks
(AT simulation, DELTA standard optics).

FIG. 2. Orbit response at 108 BPMs for the simulated x,z-
coupled DELTA storage ring. In this example 3000 randomly
disturbed orbit vectors are shown. The data sets are used as
inputs for supervised training of neural networks.

with pseudo-random numbers in the range of 0% to 5%
in 1%-steps. These noisy values are used as so-called ’la-
beled’ input/target data to train fully connected shallow
feed–forward NNs (see Fig. 4). The NNs consist of three
neuron layers, with 108 BPM input, up to 108 hidden
and 56 steerer output neurons, respectively. To enable
nonlinear orbit response behavior especially for larger de-
viations the hyperbolic tangent function (tanh) was used
as the neuron transfer weight-function between the input
and hidden layers. The hidden and output layers are con-
nected via a linear transfer function. Supervised training
was performed using different learning algorithms. Most
effective network learning methods are the scaled con-
jugate gradient (scg) algorithm [19] and the conjugate

FIG. 3. Histograms of 3000 simulation data sets. Frequency
distribution of the steerer strength mean values for each dis-
turbed orbit (ML target data, top) and the corresponding
frequency distribution of orbit errors (ML input data, bot-
tom). The density fitting curves of orbit errors (red and black
lines in the bottom plot) have been evaluated at 100 equally
spaced points that cover the range of the data (nonparametric
kernel-smoothing distribution [13], [18]).

gradient backpropagation with Fletcher-Reeves updates
(cgf) [20]. Levenberg-Marquardt backpropagation [21]
with Bayesian-Regularization methods [22, 23] take more
computing time, but are sometimes better applicable for
more challenging problems. The network training perfor-
mances (often also referred to as fitness or loss-function)
for a cgf-based learning algorithm with various degrees
of training data noise levels are represented exemplary in
Fig. 5. Usually, the fitness is rated by the mean squared
normalized error performance function Emse calculated
at the network output:

Emse =
1

P

P∑
p=1

1

N

N∑
j=1

(osteererpj − tsteererpj )2 . (2)

It sums up the squared differences between all target (t)
and network output (o) neurons (N) for a specific num-
ber of data patterns (P). Commonly, the entire pool
of patterns is divided into three data sub-sets [13]: (1)
The training set (typically 80% of the total data pool)
is used to fit the NN models by updating iteratively the
network weights and biases. (2) The validation set (typ-
ically 10%) are ’unseen’ data to verify the performance
and to estimate the prediction error for an individual
model selection. (3) The test data set (typically 10%)
consists also of ’unseen’ data kept in a so-called ’vault’ to
rank different NN model designs when fine-tuning model
hyper-parameters. It is used for assessment of the gener-
alization error of the final chosen model.

Fig. 5 depicts mse-scored training results for a ran-
domly selected hidden validation sub-set of 300 record-
ings for various data noise levels (so-called validation
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FIG. 4. Schematic view of the three-layered neural network
topology to be trained for automated orbit correction. In
addition to the BPM input neurons, optionally other neurons
can take more components into account which influence the
closed orbit data, e.g., status of the insertion devices (ID) as
well as the radio frequency (RF).

FIG. 5. Network performance functions for ’unseen’ valida-
tion data sets (validation curves). Each curve refers to a
hidden sub-set of 300 recordings ranking the network’s per-
formance according to the mean of squared errors (mse) for
’unseen’ data. In this example, in dependence of cgf-based
backpropagation learning iterations [20].

curves). It shows, that the network mse-fitness decrease
with increasing number of learning iterations, but the
best performance reduces also continuously with increas-
ing noise level (’saturation effect’). For example, data
noise levels larger than 3% lead to worse training results,
with performance gains of less than two orders of magni-
tude with respect to the initial fitness. But in all cases,
the falling curves indicate that the neural networks are
able to learn and generalize a correlation between orbit
deviations and steerer strength variations.

III. REAL MACHINE OPERATION

Based on the simulation results, a similar procedure
was implemented for the real storage ring orbit correc-
tion. But now the training data were experimentally ac-
quired during actual accelerator operation. Compared to
the uncoupled case in previous real machine studies [7],
at this time the orbit has been disturbed in both orbit di-
rections simultaneously. For this purpose, all horizontally
(horz.) and vertically (vert.) deflecting steerer magnets
were randomly adjusted at once and subsequently the re-
sulting closed orbit was measured at all BPM positions
in both planes at the same time.

A. Data acquisition

All steerer magnets are additional coils on quadrupole
yokes which can be ramped to a current of max. ±10 A,
yielding to beam kicks of max. ±3 mrad horizontally and
max. ±1 mrad vertically at an electron energy of 1.5 GeV.
They are controlled via 12-bit digital-to-analog convert-
ers (DACs) integrated on control area bus (CAN) to se-
rial (RS232) bus converter modules [24]. The DACs allow
current changes with a granularity of 2.4 mA, which cor-
responds also to the minimum read-back resolution [8].

The analog capacitive multiplexed pick-up signals of
the beam position monitors are read out via a mixture
of I-Tech Libera [25] and Bergoz MX [26] electronics.
The MX-BPMs provide the measured beam position as
an analog voltage that is digitized by 12-bit analog-to-
digital converters (ADCs) [27] and fed over a CAN-bus
into the EPICS control system [28]. A 10 Hz low-pass
filter reduces sampling noise while maintaining sufficient
bandwidth for the ’slow’ orbit feedback. The measuring
accuracy is approx. ±5µm, mainly limited by the reso-
lution of the ADCs. At beam currents above 2 mA the
’slow’ acquisition data from Libera BPMs are of roughly
the same quality as the data from the MX-BPMs. For
more detailed descriptions see [17, 29].

Since adequate experimental data, i.e., large num-
ber of randomly disturbed orbits, from an EPICS-log
archive [31] were not available, a special data mining pro-
gram was implemented. This program randomly varies
all steerer strengths in both planes at once within in-
tervals from typically ±200 mA up to ±500 mA. The
interval limits are a compromise between risk of beam
losses and minimizing relative measurement errors due
to the limited steerer strength resolution of 2.4 mA. Af-
ter each perturbation, the steerer strength changes and
the emerging closed orbit differences in both planes are
measured and recorded. Erroneous BPM readings, e.g.,
due to read/write time-outs and pointless outliers are di-
rectly filtered out. On average, approx. 15-20 seconds are
required per single measurement cycle. That way, 4376
random steerer-BPM data combinations (corresponding
to ML input/target data pairs) were recorded (see Fig. 6).
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Moreover, measurements of conventional orbit re-
sponse matrices for various singular positive and negative
steerer kicks were carried out too. The measurements of
all sources with different strength intervals were merged
to a common data pool of approx. 4600 data pairs to ob-
tain at least ten times as much training data as neurons
in the NNs. The data pool noise level was estimated to
approximately 2% caused by the combined error of BPM
and steerer strength read–back accuracies, mainly domi-
nated by the limited steerer strength granularity.

Similar to Fig. 3 for the simulation case, Fig. 7 depicts
the measured random orbit error χx,z (ML input data)
and the corresponding random steerer strength distribu-
tions (ML target data). Here, three different interval
limits for the random variations (±200 mA, ±300 mA,
±500 mA) were combined and equally applied to the hor-
izontal and vertical steerer magnets. With this the max-
imum of the orbit error distribution is located at ap-
proximately 2.7 mm horizontally and 1.3 mm vertically,
whereby larger orbit errors are over-represented. The
general goal is to obtain as much data as possible over
a wide range of orbit errors to enable efficient correction
of small to large trajectory deviations during machine
operation.

FIG. 6. Measured orbit response at 54 horizontal (top) and
54 vertical (bottom) BPM positions for the DELTA storage
ring. In this example 4376 randomly disturbed orbit vectors
have been measured (compare with Fig. 2). On each box,
the central mark indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data
points not considered outliers, and the statistical outliers are
plotted individually using the ’+’ symbol. These experimen-
tal data sets are used as inputs for the training of neural
networks.

FIG. 7. Histograms of 4376 experimental data sets. Steerer
strength mean values for each disturbed orbit (ML target
data, top) and the corresponding frequency distribution of or-
bit errors (ML input data, bottom). The density fits of orbit
errors (red and black lines) have been evaluated at 100 equally
spaced points that cover the range of the data (nonparamet-
ric kernel-smoothing distribution [13], [18]). Compare with
Fig. 3 for simulated data.

B. Weighted beam position monitors

To increase the impact of orbit deviations at more im-
portant storage ring positions (e.g., synchrotron radia-
tion source points or the injection region) each BPM can
be assigned with an individual weight factor (see Fig. 8).
With w̃BPM

x,z as a diagonal matrix of BPM weight fac-
tors, the weighted orbit quality χw

x ,z can be evaluated as
a scalar quantity for both planes (x , z ) by

χw
x,z =

∥∥∥w̃BPM
x,z · (

−→
∆dx,z + R̃x,z ·

−→
∆Ix,z)

∥∥∥
2
. (3)

The goal for an orbit correction algorithm is to minimize
the residual closed orbit error χw

x,z for arbitrary orbit

deviations
−→
∆dx,z with respect to any desired reference

orbit. The right summand R̃x ,z ·
−→
∆Ix,z in equation 3 can

be determined by means of a reverse neural network (see
Fig. 9). The reverse NN can also be trained with the
experimental data patterns (P ), but now each squared
network error e2pj = (opj − tpj)

2 must be weighted by

an individual BPM weight factor wBPM
pj (see Fig.8) as

follows:

ER
mse =

1

P

P∑
p=1

1

N

N∑
j=1

wBPM
pj (oBPM

pj − tBPM
pj )2 . (4)

Thus, the reverse trained NN, as a representation of the
orbit response matrix R̃, is able to determine orbit devi-

ations
−→
∆d at all BPMs for given steerer strength changes−→

∆I . Afterwards, the weighted orbit error χw in equa-
tion 3 can be minimized with the help of a numerical
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FIG. 8. Individual BPM weight factors for horizontal (top)
and vertical (bottom) BPM measurements. BPM no. 43 was
switched off due to hardware malfunction (reference data file:
reference.200811-1).

FIG. 9. Schematic view of the reverse neural network topol-
ogy. Training of this network can also take weighted beam
position monitors into account.

optimizer, e.g., the BFGS Quasi-Newton method [30].
In addition, the optimizer itself can also be replaced by
a pre-trained NN. For this purpose, the optimizer has
to pre-calculate the optimum χw -values for all measured

orbit deviations
−→
∆d . These data pairs again serve as la-

beled input/target data to train a NN as an optimizer
substitute.

C. Neural network training

Since each corrector strength variation normally effects
the beam amplitude at all BPM positions in the stor-
age ring, as for the simulations, a fully connected feed-
forward neural network (FFNN) was specified as the neu-
ron network connection architecture. Thus, the NNs to
be trained by the experimental data consist also of three
layers (108/108/56) with a total of 272 neurons and ap-
proximately 17700 weights and biases. A schematic of
the FFNN layout is shown in Fig. 10.

FIG. 10. Detailed layout of the neural network topology for a
full x,z-coupled orbit correction at the storage ring DELTA.
The input layer represents 54 BPMs for each plane, fed by
measured orbit deviations. It is connected via a ’hidden’ layer
with the output values for 56 correction magnets (HK1-30,
VK1-26). The correction considers both transversal coordi-
nates (x, z) as well as their coupling. In total the network con-
sists of approx. 17700 connections (red lines, only partially
shown). For reverse training the input and output layers have
been swapped (see Fig. 4 and Fig. 9). Figure partly created
with ’MemBrain’ [32].

FIG. 11. Neural network training (see Fig. 4 and Fig. 9)
with experimental training data (blue) and verification of the
neural network with an additional ’unseen’ validation test
data set (green). In these examples a scaled conjugate gradi-
ent (scg) backpropagation algorithm was applied. A forward
training performance of 7.3 · 10−4 A2 was reached with no
significant improvement after approx. 1600 iterations. The
reverse training achieved a network error of 1.2 · 10−2 mm2

after about 700 iterations. In all cases the neural network
training errors were reduced approximately three orders of
magnitude related to the initial values.

The supervised network training was carried out with
various conjugate gradient backpropagation learning al-
gorithms. Most effective learning was achieved with
scaled conjugate gradient (scg) based algorithms [19].
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Typical forward and reverse training curves for pure
training data (blue curves) and the related validation
data sets (green curves) are shown in Fig. 11. In both
cases, the network output error is reduced continuously,
mainly limited by the data noise level. Best forward val-
idation performance (Emse-value) of 7.3 · 10−4 A2 was
reached after 1600 scg-training iterations (often also re-
ferred to as epochs) applying a full batch (all patterns)
training. The reverse training reduced the network out-
put error (ER

mse-value) to 1.2 · 10−2 mm2 after 700 iter-
ations. For both cases, the network’s fitness gains ap-
proximately three orders of magnitude compared to the
starting values, which indicates sufficient fitness perfor-
mance and is comparable with the simulation results (see
Fig. 5). Hence, also for the experimental data, NNs are
able to learn and generalize the correlation between orbit
deviations and the related steerer strength variations.

Finally, the scg-trained NNs, which correspond best to
a machine learned orbit correction model, with gaining
performances at a minimum of three orders of magni-
tude, were tested to predict the steerer strengths settings
to compensate real orbit deviations. Through iterative
use of the sign inverted values from the network output
(predicted steerer strengths changes), the trained NNs
were able to correct successively any randomly disturbed
closed orbit. This was verified by dedicated benchmark
tests.

IV. BENCHMARK RESULTS

The performance of the machine learning based orbit
correction program was benchmarked against a recently
implemented numerical-based OC approach [11, 12] at
different reference conditions. The tests considered ac-
tual reference settings, which define the currently valid
reference orbit and weight factors (wf) of the used num-
bers K of BPMs (see Fig. 8). Various arbitrary steerer
induced orbit errors have been generated (a–d) in both
orbit planes respectively (hk/vk), which are indicated
by the legends in the figures. The benchmark measure-
ments are shown see Fig. 12 (ML-based) and Fig. 13
(numerical-based) separately for each orbit plane.

In addition, typical but not pre-trained sources for or-
bit disturbances have been provoked. This includes un-
matched closed orbit bumps (e.g., injection dc-bump),
strong sextupole strength changes (SF/SD) or ramping
of insertion devices (e.g., U250). The benchmark results
are shown in Fig. 14 (ML-based) and Fig. 15 (numerical-
based) for each plane separately.

The residual orbit quality χw
x ,z is scored by the

weighted root mean squared value (wrms) over all K
BPMs in both orbit planes (x , z ):

χw
x,z :=

√√√√ 1

K

K∑
i=1

(
wBPM

x,z ·∆x,z

)2
i
. (5)

The individual start wrms-errors χw
x,z (a–j) for both mea-

FIG. 12. Weighted rms orbit error χw
x,z for different steerer

(hk/vk) induced orbit disturbances (a-d) compensated iter-
atively by the ML-based OC program. Due to x,z-coupling
the provoked deviations appear in both orbit planes. A total
of 18 steps were required to compensate for all disturbances
(a-d). In comparison to Fig. 13, similar final residual orbit
errors are achieved in significantly fewer iterations.

FIG. 13. Weighted rms orbit error χw
x,z to benchmark the

orbit correction quality and convergence for a conventional,
numerical-based method [11, 12]. The correction was per-
formed iteratively for different steerer (hk/vk) caused orbit
distortions (a-d). As in Fig. 12, orbit deviations appear in
both orbit planes because of x,z-coupling. A total of 30 steps
were required to compensate for all disturbances (a-d).

surement methods are slightly different, mainly caused by
a wiggler magnet strength drift during data acquisition.

As can be seen from the graphs both OC programs,
the machine learning based version as well as the conven-
tional numerical-based approach, worked similarly stable
and they were able to compensate all orbit disturbances
without any beam losses. The ML-based OC needs ap-
proximately 2–4 orbit correction iterations to equalize the
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FIG. 14. Individual ML-based correction steps to compensate
orbit deviations caused by different error sources (a-j) which
were not included in the training data sets. Although these
types of error sources were not considered during NN training,
all disturbances (a-j) could be compensated in a total of 26
steps.

FIG. 15. Correction for different scenarios of orbit devia-
tions (a-j) performed with a conventional orbit correction pro-
gram [11, 12]. In this case, a total of 33 steps were required to
compensate for all perturbations (a-j). Compare with Fig. 14.

individual provoked orbit deviations. Even distortions
(e–j) which were not trained during supervised learning
have been compensated with analogous quality. After
each provoked error the residual weighted orbit error con-
verged to less than 3 mm which could be improved by
adding more training data in the range with smaller or-
bit deviations (see Fig. 7). In direct comparison, the
conventional OC method requires more orbit correction
iterations to compensate the same provoked orbit distur-
bances. The residual weighted orbit error converged also

to less than 3 mm, but over all, in these benchmark exam-
ples the standard OC version needs 63 steps (see Fig. 13
and Fig. 15) compared to 44 steps for the ML-based im-
plementation (see Fig. 12 and Fig. 14).

V. SUMMARY AND OUTLOOK

A machine learning-driven orbit correction has success-
fully been implemented at the 1.5–GeV electron storage
ring of the DELTA accelerator facility. It has been shown
that ML-based implementations are competitive with
classical SVD-like numerical approaches. The achieved
remaining orbit error is similar to the results of these
standard correction algorithms. In general, ML-based
methods require fewer correction steps which leads to sig-
nificantly faster orbit correction convergence. Since ML
techniques based on training with real machine data, this
method automatically incorporates storage ring imper-
fections (e.g., alignment errors) and non-linearities (e.g.,
magnetic fringe fields) during beam position controlling.
Furthermore, it has been demonstrated that NNs were
also able to cope with beam disturbances that had not
been trained previously. In addition, even changes of
BPM offsets, e.g. due to the realignment of individual
lattice magnets, can be taken into account simply by
editing the orbit reference data file. Therefore retrain-
ing of the entire neural network is not required. In gen-
eral, once trained, the NN-based application showed high
reliability, numerical stability and robustness.

Despite ML-based OC being competitive, there is still
potential for improvements. For example, at DELTA
large beam amplitudes at sextupole magnets integrated
into the quadrupole magnets generate strong orbit kicks
which can be of the same order as steerer kicks. So far,
this effect was not taken into account, but could also
be included due to additional dedicated ’sextupole neu-
rons’. Another major upgrade would be the introduc-
tion of adaptive training methods. In this case, the NNs
would be constantly supplied with current measurement
data and dynamically kept up to date by so-called ’train-
ing on the fly’ techniques. Finally, the integration of
the already installed weak but fast steerer magnets could
supplementary be helpful especially for minor orbit cor-
rection steps.
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