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Abstract
In recent years, several control system applications us-

ing machine learning (ML) techniques have been developed
and tested to automate the control and optimization of the
1.5 GeV synchrotron radiation source DELTA. These ap-
plications cover a wide range of tasks, including electron
beam position correction, working point control, chromatic-
ity adjustment, injection process optimization, as well as
CHG spectra (coherent harmonic generation) analysis. Var-
ious machine learning techniques were utilized to imple-
ment these projects. This report provides an overview of the
projects, outlines the basic concepts, and identifies ideas for
future developments.

INTRODUCTION
This article presents a general overview of recent advance-

ments in the application of machine learning (ML) tech-
niques for accelerator control and CHG (coherent harmonic
generation) spectral analysis at the 1.5 GeV synchrotron light
source DELTA [1–3].

The first study demonstrates the successful implementa-
tion of neural networks (NNs) for the correction of electron
beam trajectories (orbits). These networks were trained
using measured beam position data and corresponding cor-
rector magnet strengths, showcasing competitive results but
with fewer correction steps compared to conventional orbit
correction methods.

In a parallel effort, ML-driven techniques were employed
to control the working point (betatron tunes in both or-
bit planes). Therefore, a classical Proportional-Integral-
Derivative (PID) system was replaced on a test basis by
ML-trained NNs.

The paper further explores ML-based methods for adjust-
ing storage ring chromaticity values. Gaussian Process Re-
gressors (GPRs) and NNs were trained as surrogate models
to predict optimal sextupole magnet settings using statis-
tical and heuristic algorithms. Results showed significant
improvements in chromaticity control within few iterations
compared to manually performed settings.

Additionally, a novel approach was employed to optimize
injection efficiency from the booster synchrotron BoDo to
the storage ring. Through ML-trained predictive models
in combination with heuristic optimization algorithms, in-
jection settings were dynamically adjusted, resulting in im-
proved electron transfer rates.

Lastly, the paper outlines the analysis of CHG-induced ra-
diation spectra. CHG-generated ultrashort light pulses were
examined through convolutional neural networks (CNNs) to
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predict certain seeding laser settings from spectral measure-
ments. This approach enabled the adjustment of the seeding
laser parameters in order to optimize the spectra properties.

ORBIT CORRECTION
At DELTA, the orbit is measured at 54 locations around

the storage ring roughly every second using multiplexed
beam position monitor (BPM) pick-up signals. Unwanted
deviations of the beam position with respect to the ideal
reference orbit are minimized by 56 corrector magnets, 30
for the horizontal plane (𝑥) and 26 for the vertical plane
(𝑦). They are operated by a ‘slow’ (approx. 1 Hz) software
feedback system applying numerical algorithms such as the
SVD-method (singular value decomposition) [4] or the IPM-
based (interior point-proximal method) software [5].

Figure 1: Orbit response at 108 BPM signals for the sim-
ulated 𝑥,𝑦-coupled DELTA storage ring, calculated for 54
horizontal (𝑥) and 54 vertical (𝑦) deviations. In this example,
3000 randomly disturbed orbit vectors are shown. The data
sets are used as inputs for supervised training of NNs.

As an alternative method, flat, non-deep NNs have been
investigated for automatic orbit correction. ML-based stud-
ies on this topic, which initially were based on simulations
(e.g., see Figs. 1 and 2), have then been successfully trans-
ferred to real accelerator operation. For this purpose, classi-
cal fully connected multi-layer feed-forward networks with
more than 17.000 links were trained using supervised learn-
ing with measured beam position data and corresponding
corrector magnet strengths. The trained networks subse-
quently served as inverse models for local and global beam
position corrections. The supervised NN training was com-
paratively evaluated with various back-propagation learning
algorithms (e.g., see Fig. 2). Finally, the performance of
the ML-based beam control was benchmarked with conven-



Figure 2: Network learning functions for ’unseen’ valida-
tion data sets (validation curves). Each curve refers to a
hidden sub-set of 300 recordings ranking the network’s per-
formance according to the mean of squared errors (mse) for
’unseen’ data. In this example iterative NN learning was per-
formed with a conjugate gradients-based back-propagation
algorithm [6, 7] for various noise levels of the training data
(simulation).

tional numerical-based computational methods (SVD [4],
IPM [5]). Here, the ML-based approach showed competitive
orbit correction quality, but generally with a lower number
of iteration steps. For more details and results see [8–10].

TUNES CONTROL
The working point 𝑄𝑥,𝑦 of a storage ring, which is com-

posed of the betatron tunes for both transverse directions,
describes the number of betatron oscillations of the stored
particle beam per revolution. The betatron tunes are crucial
tuning parameters for stable operation and must therefore
be constantly monitored and readjusted if necessary. Both
values are set with the aid of beam-focusing quadrupole mag-
nets. For this purpose, 3 horizontally and 4 vertically focus-
ing quadrupole circuits are available, which are distributed
in the arcs of the DELTA storage ring. For automatic control,
a classic Proportional Integral Differential (PID) feedback
system has been in operation for many years [11].

In a test scenario, this system was replaced by an ML-
based control mechanism. For training data acquisition,
quadrupole strengths were systematically and randomly var-
ied (actuator data), and the corresponding tune shifts (re-
sponse data) were measured. These actuator/response mea-
surement pairs serve as labeled data for supervised training
of classical, shallow, none-deep, and fully-connected feed-
forward NNs. During training, the NNs ’learn’ the correla-
tion between changes in quadrupole strengths and tune shifts,
and can subsequently be used as predictive models for auto-
matic tune adjustment. An example is shown in Fig. 3. This
approach was successfully applied for both the simulated
virtual storage ring and in real machine operation. It was
even possible to deploy surrogate models in real machine
operation that had only been trained with simulated data.
The results are summarized in [9, 12, 13].

Figure 3: Two tune matching examples starting from differ-
ent values with the wiggler magnet (SAW) switched on and
off. The ML-based method calculates iterative shifts of the
working point (𝑄𝑥,𝑦) up to an arbitrarily chosen target tune.
The blue lines indicate resonance lines in the tune diagram
up to the fifth order.

CHROMATICITY ADJUSTMENT

Changes of the betatron tunes normalized to the relative
momentum offset of the electron beam define the chromatic-
ity of a storage ring. In this case, horizontally and vertically
focusing sextupole magnets are utilized to variably adjust
these chromaticity values within certain technical limits. For
this purpose, the DELTA storage ring is equipped with a
total of 13 individually controllable sextupole power supply
circuits, which are software-grouped into 7 families. By de-
fault, the adjustment of the magnet circuit currents is carried
out manually based on empirical knowledge.

Figure 4: Comparison of network training performance func-
tions (fitness: mean squared NN output error as a function
of training iterations) with simulated data applying two dif-
ferent conjugate gradient back-propagation methods [6, 7].
With 80 % of the data, the network is trained (blue curve)
and 20 % of the data are used for validation (10 %) and test
(10 %) with ’unseen’ data sets (green and red curve). The
continuously falling curves indicate significant fitness im-
provements without over-fitting effects.



Recently, similar to the procedure for adjusting working
points, an ML-based approach was utilized to automate the
control in this context as well. In this case, the strengths
of the sextupole magnets were varied randomly as well as
systematically one by one (actuator data), and the result-
ing influences on the chromaticity values were measured
(response data) simultaneously. NNs trained with these actu-
ator/response data (see Fig. 4) serve as predictive models for
various kinds of optimization algorithms (e.g., Bayesian op-
timization) to improve sextupole settings during accelerator
operation. It turns out that classical ML methods applying
conventional feed-forward NNs are adequate for regulating
the chromaticity in both simulation and real storage ring op-
eration. It was also shown that splitting the software-grouped
sextupole powering circuits increases flexibility in achieving
desired chromaticity. For more information see [14, 15].

INJECTION OPTIMIZATION
At the DELTA storage ring facility, all magnets as well

as the radiofrequency power of the Booster Synchrotron
(BoDo) cavity are software-controlled to cyclically ramp up
and down. Each of these energy ramp cycles takes about
7 seconds, whereby the electron energy is increased from
90 MeV to 1.5 GeV. Depending on the injection efficiency
and the stored beam current in BoDo, typically 150 to 200
ramp cycles are required to reach the maximum beam current
of 130 mA in the storage ring. To minimize injection times,
optimizing the injection efficiency from BoDo to the storage
ring is crucial.

During injection, a variety of parameters must be manu-
ally adjusted, such as the strength of transfer channel mag-
nets and trigger timings for pulsed injection and extraction

Figure 5: Examples for injection efficiency optimization
scans using Bayesian optimization and applying a Gaussian
Process Regressor (GPR) as a surrogate injection model
(blue) in comparison to an NN-trained model (red). The
best parameter set of each scan is saved and can subse-
quently be applied to the injection elements. Both runs
started with a misadjusted injection setup with an efficiency
of approx. 10 % where the GPR-based method was able to
increase the value to approx. 62 %.

elements. Innovative ML concepts were tested to automate
this process and improve electron transfer rates.

In two separate studies [14, 16], between 13 and 18 injec-
tion parameters were slightly varied to identify the corre-
sponding impact on injection efficiency. In this case these
measurements served as labeled data for supervised learning
of different injection prediction models. In addition to NNs,
decision trees (DTs) and Gaussian Process Regressors (GPR)
were employed as prediction models. Heuristic (e.g. simu-
lated annealing) and statistical (e.g. Bayesian optimization)
optimization algorithms utilized these ML-based surrogate
models to improve injection settings between each injection
cycle. This process resulted in substantial improvements in
injection efficiency for both the GPR- and NN-based models
within a few injection cycles. As an example see Fig. 5.
Decision trees were found to be ineffective in this area. The
main results are summarized in [17].

ANALYSIS OF CHG SPECTRA
In order to generate synchrotron radiation pulses with

a duration below 100 fs, coherent harmonics generation
(CHG) [18] has been employed at DELTA since 2011 [2, 3].
As shown in Fig. 6, this technique uses an ultrashort seed
laser pulse which interacts with the electron beam in an un-
dulator (modulator) that is tuned to the laser wavelength.
This results in a sinusoidal modulation of the electron en-
ergy, which is then converted into a density modulation
using a magnetic chicane, forming microbunches separated
by one laser wavelength. In a subsequent undulator (radia-
tor), coherent emission is produced from the microbunches
at harmonics of the seed laser wavelength. The coherently
emitted light pulse has a pulse length comparable to the
pulse length of the seed laser pulse (50 fs at DELTA short-
pulse source) with wavelengths extending into the vacuum-
ultraviolet range (VUV).

The spectral characteristics of the CHG radiation depends,
among others, on the spectro-temporal properties of the seed
laser pulse and the chicane strength. The energy modulation
amplitude of the electrons follows the temporal envelope

Figure 6: Magnetic setup for CHG, corresponding longitudi-
nal phase space distributions and final longitudinal electron
density.



of the seed laser pulse. The spectral content of the CHG
pulses also depends on the wavelength distribution along the
seed laser pulse. A laser pulse with central frequency 𝜔0
is expressed in the frequency domain in terms of spectral
amplitude ̃𝐸(𝜔) and spectral phase 𝜑(𝜔) by

̃𝐸(𝜔) = | ̃𝐸0(𝜔)|𝑒−𝑖𝜑(𝜔), (1)

where 𝜑(𝜔) can be expanded into a Taylor series as

𝜑(𝜔) = 𝐷0 + 𝐷1.(𝜔 − 𝜔0) + 𝐷2.(𝜔 − 𝜔0)2+
𝐷3.(𝜔 − 𝜔0)3 + ⋯ .

(2)

Here, 𝐷2 is the Group Delay Dispersion (GDD), and 𝐷3
is the Third Order Dispersion (TOD). For a Fourier-limited
laser pulse, the GDD and higher-order terms are zero, while
a non-zero GDD lengthens the pulse and introduces a linear
frequency chirp. A non-zero TOD introduces an asymmetry
in the pulse shape and give rise to side pulses. This allows
one to manipulate the CHG pulse shape by tuning the laser
and chicane properties.

To study this effect and to compare the simulations with
the observations made at DELTA short-pulse facility, the
spectra of CHG radiation were simulated for laser pulses
with different spectral laser phase and varying strengths
𝑅56 of the magnetic chicane. The influence of two laser
pulse parameters, GDD and TOD, on the CHG spectra was
primarily investigated. To predict their values from the mea-
sured CHG spectra, a Convolutional Neural Network (CNN)
was designed and subsequently trained with a data set of
over 40000 numerically simulated spectra for various com-
binations of GDD and TOD values [19]. With the trained
surrogate model, GDD and TOD values of the seed laser
pulse were predicted from the observed CHG spectra for
different seed laser phases. Figure 7 compares two exam-
ples of observed CHG radiation intensities as a function of
the emitted wavelength and the chicane strength (spectral
map) with those simulated using the GDD and TOD values
predicted by the CNN.

SUMMARY AND OUTLOOK
Collectively, all studies highlight the successful integra-

tion of machine ML techniques into accelerator physics appli-
cations, enabling improved control, efficiency, and precision
across a variety of time-consuming and complex processes.

In some cases, the results can be further improved by ad-
ditional parameter optimizations of the ML algorithms and
by systematic extension of the training data. Here, incorpo-
rating ’online’ training during machine operation (”training
on the fly”) and reinforcement learning techniques can be
beneficial additions.

Furthermore, to enhance sampling of the prediction mod-
els, the future investigations of alternative optimization
strategies such as swarm intelligence (e.g., Ant Colony Op-
timization) or other evolutionary-based algorithms is in-
tended.

Figure 7: Observed CHG spectral maps (top row) and simu-
lated spectral maps from the GDD and TOD values predicted
by CNN (bottom row). The predicted GDD and TOD values
are specified above each column.

One issue with the ML-based approach for CHG spectra
analysis is that the simulated spectral maps are generated
from idealized simulations which do not consider several
factors such as the higher-order spectral phase beyond TOD,
reflectivity and transmittance of the optical components used,
noise in the observation etc. A better representation of these
effects in the training samples could help the CNN achieve
closer matches in the CHG spectral maps observed in prac-
tice.

Finally, it is planned to implement dedicated software
containers for the more universal steps in the ML workflow
to improve software maintenance and reusability.
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